* Libre parcours (1990) * La révolte des enfants (1991) * Après la pluie (1993) * Killer Kid (1994) * Ne m'oublie pas (1995) * Signes (1997) * Plaisirs d'amour (1998) * Invités sur la terre (2001) * Seuls au monde (2003) * Projection privée (2004) * Mémoires du futur (2006) * Play time (2008) * The Gruffalo (2010) * Refuges (2011)
Image-guided percutaneous biopsy of abdominal masses is among the most commonly performed procedures in interventional radiology. While most abdominal masses are readily amenable to percutaneous biopsy, some may be technically challenging for a number of reasons. Low lesion conspicuity, small size, overlying or intervening structures, motion, such as that due to respiration, are some of the factors that can influence the ability and ultimately the success of an abdominal biopsy. Various techniques or technologies, such as choice of imaging modality, use of intravenous contrast and anatomic landmarks, patient positioning, organ displacement or trans-organ approach, angling CT gantry, triangulation method, real-time guidance with CT fluoroscopy or ultrasound, sedation or breath-hold, pre-procedural image fusion, electromagnetic tracking, and others, when used singularly or in combination, can overcome these challenges to facilitate needle placement in abdominal masses that otherwise would be considered not amenable to percutaneous biopsy. Familiarity and awareness of these techniques allows the interventional radiologist to expand the use of percutaneous biopsy in clinical practice, and help choose the most appropriate technique for a particular patient.
Rene Aubry - Play Time (2008)
During the last decades, computed tomography (CT) has become the predominant imaging technique in the diagnosis of craniosynostosis. In most craniofacial centers, at least one three-dimensional (3D) computed tomographic scan is obtained in every case of suspected craniosynostosis. However, with regard to the risk of radiation exposure particularly in young infants, CT scanning and even plain radiography should be indicated extremely carefully. Our current diagnostic protocol in the management of single-suture craniosynostosis is mainly based on careful clinical examination with regard to severity and degree of the abnormality and on ophthalmoscopic surveillance. Imaging techniques consist of ultrasound examination in young infants while routine plain radiographs are usually postponed to the date of surgery or the end of the first year. CT and magnetic resonance imaging (MRI) are confined to special diagnostic problems rarely encountered in isolated craniosynostosis. The results of this approach were evaluated retrospectively in 137 infants who were referred to our outpatient clinic for evaluation and/or treatment of suspected single suture craniosynostosis or positional deformity during a 2-year period (2008-2009). In 133 (97.1%) of the 137 infants, the diagnosis of single-suture craniosynostosis (n = 110) or positional plagiocephaly (n = 27) was achieved through clinical analysis only. Two further cases were classified by ultrasound, while the remaining two cases needed additional digital radiographs. In no case was CT scanning retrospectively considered necessary for establishing the diagnosis. Yet in 17.6% of cases, a cranial CT scan had already been performed elsewhere (n = 16) or had been definitely scheduled (n = 8). CT scanning is rarely necessary for evaluation of single-suture craniosynostosis. Taking into account that there is a quantifiable risk of developing cancer in further lifetime, every single CT scan should be carefully indicated.
The performance of individual computed tomography automatic exposure control (CT-AEC) is very important for radiation dose reduction and image quality equalization in CT examinations. The purpose of this study was to evaluate the performance of CT-AEC in conventional pitch mode (Normal spiral) and fast dual spiral scan (Flash spiral) in a 128-slice dual-source CT scanner. To evaluate the response properties of CT-AEC in the 128-slice DSCT scanner, a chest phantom was placed on the patient table and was fixed at the center of the field of view (FOV). The phantom scan was performed using Normal spiral and Flash spiral scanning. We measured the effective tube current time product (Eff. mAs) of simulated organs in the chest phantom along the longitudinal (z) direction, and the dose dependence (distribution) of in-plane locations for the respective scan modes was also evaluated by using a 100-mm-long pencil-type ionization chamber. The dose length product (DLP) was evaluated using the value displayed on the console after scanning. It was revealed that the response properties of CT-AEC in Normal spiral scanning depend on the respective pitches and Flash spiral scanning is independent of the respective pitches. In-plane radiation dose of Flash spiral was lower than that of Normal spiral. The DLP values showed a difference of approximately 1.7 times at the maximum. The results of our experiments provide information for adjustments for appropriate scanning parameters using CT-AEC in a 128-slice DSCT scanner. 2ff7e9595c
Comentários